Mitochondrial PKC epsilon and mitochondrial ATP-sensitive K+ channel copurify and coreconstitute to form a functioning signaling module in proteoliposomes.

نویسندگان

  • Martin Jabůrek
  • Alexandre D T Costa
  • Jana R Burton
  • Cinthia L Costa
  • Keith D Garlid
چکیده

Mitochondria are key mediators of the cardioprotective signal and the mitochondrial ATP-sensitive K+ channel (mitoK(ATP)) plays a crucial role in originating and transmitting that signal. Recently, protein kinase C epsilon (PKC epsilon) has been identified as a component of the mitoK(ATP) signaling cascade. We hypothesized that PKC epsilon and mitoK(ATP) interact directly to form functional signaling modules in the inner mitochondria membrane. To examine this possibility, we studied K+ flux in liposomes containing partially purified mitoK(ATP). The reconstituted proteins were obtained after detergent extraction of isolated mitochondria, 200-fold purification by ion exchange chromatography, and reconstitution into lipid vesicles. Immunoblot analysis revealed the presence of PKC epsilon in the reconstitutively active fraction. Addition of the PKC activators 12-phorbol 13-myristate acetate, hydrogen peroxide, and the specific PKC epsilon peptide agonist, psi epsilonRACK, each activated mitoK(ATP)-dependent K+ flux in the reconstituted system. This effect of PKC epsilon was prevented by chelerythrine, by the specific PKC epsilon peptide antagonist, epsilonV(1-2), and by the specific mitoK(ATP) inhibitor 5-hydroxydecanoate. In addition, the activating effect of PKC agonists was reversed by exogenous protein phosphatase 2A. These results demonstrate persistent, functional association of mitochondrial PKC epsilon and mitoK(ATP).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitochondrial PKC and Mitochondrial ATP-Sensitive K Channel Copurify and Coreconstitute to Form a Functioning Signaling Module in Proteoliposomes

Mitochondria are key mediators of the cardioprotective signal and the mitochondrial ATP-sensitive K channel (mitoKATP) plays a crucial role in originating and transmitting that signal. Recently, protein kinase C (PKC ) has been identified as a component of the mitoKATP signaling cascade. We hypothesized that PKC and mitoKATP interact directly to form functional signaling modules in the inner mi...

متن کامل

Diazoxide acts more as a PKC-epsilon activator, and indirectly activates the mitochondrial K(ATP) channel conferring cardioprotection against hypoxic injury.

BACKGROUND AND PURPOSE Diazoxide, a well-known opener of the mitochondrial ATP-sensitive potassium (mitoK(ATP)) channel, has been demonstrated to exert cardioprotective effect against ischemic injury through the mitoK(ATP) channel and protein kinase C (PKC). We aimed to clarify the role of PKC isoforms and the relationship between the PKC isoforms and the mitoK(ATP) channel in diazoxide-induced...

متن کامل

Biophysical and electropharmacological properties of single mitoKATP channel in rat brain mitochondrial inner membrane

Introduction: Different ATP-sensitive potassium channels have been detected in the mitochondrial inner membrane of cells. They are suggested to be involved in cell processes including cell protection. Here, we characterized the biophysical and electropharmacological properties of a KATP channel in the brain mitochondrial inner membranes. Methods: After removing and homogenizing the rat brain...

متن کامل

Neuroprotective Effect of Mitochondrial Katp Channel Opener Upon Neuronal Cortical Brain of Rat Population

Purpose: So far there is no effective drug therapy to prevent neuronal loss after brain stroke. In the present study we studied effects of The Mitochondrial K-ATP channel regulators on neuronal cell population and neurological function after ischemia reperfusion in the rat. Materials and Methods: Rats temporarily subjected to four vessels occlusion for 15 minutes followed by 24 hours reperfusi...

متن کامل

Activation of mitochondrial ATP-sensitive K(+) channel for cardiac protection against ischemic injury is dependent on protein kinase C activity.

Protein kinase C (PKC) is involved in the second messenger signaling cascade during ischemic and Ca(2+) preconditioning. Given that the pharmacological activation of mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channels also mimics preconditioning, the mechanisms linking PKC activation and mitoK(ATP) channels remain to be established. We hypothesize that PKC activity is important for the openi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 99 8  شماره 

صفحات  -

تاریخ انتشار 2006